1.6 Performance 28
1.7 The Power Wall 40
1.8 The Sea Change: The Switch from Uniprocessors to
Multiprocessors 43
1.9 Real Stuff: Benchmarking the Intel Core i7 46
1.10 Fallacies and Pitfalls 49
1.11 Concluding Remarks 52
1.12 Historical Perspective and Further Reading 54
1.13 Exercises 54

Introduction

Welcome to this book! Were delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Computers
are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s Law. This unusual
industry embraces innovation at a breath-taking rate. In the last 30 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception
of electronic computing in the late 1940s. Had the transportation industry kept
pace with the computer industry, for example, today we could travel from New
York to London in a second for a penny. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in San
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.

Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolutions.
The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications that
were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fiction”

B Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars was
ludicrous. Today, computers reduce pollution, improve fuel efficiency via
engine controls, and increase safety through blind spot warnings, lane
departure warnings, moving object detection, and air bag inflation to protect
occupants in a crash.

B Cell phones: Who would have dreamed that advances in computer
systems would lead to more than half of the planet having mobile phones,
allowing person-to-person communication to almost anyone anywhere in
the world?

B Human genome project: The cost of computer equipment to map and analyze
human DNA sequences was hundreds of millions of dollars. It's unlikely that
anyone would have considered this project had the computer costs been 10
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,
costs continue to drop; you will soon be able to acquire your own genome,
allowing medical care to be tailored to you.

B World Wide Web: Not in existence at the time of the first edition of this book,
the web has transformed our society. For many, the web has replaced libraries
and newspapers.

B Search engines: As the content of the web grew in size and in value, finding
relevant information became increasingly important. Today, many people
rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our
society. Hardware advances have allowed programmers to create wonderfully
useful software, which explains why computers are omnipresent. Today’s science
fiction suggests tomorrow’s killer applications: already on their way are glasses that
augment reality, the cashless society, and cars that can drive themselves.

1.1 Introduction

Classes of Computing Applications and Their
Characteristics

Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have different design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Personal computers (PCs) are possibly the best known form of computing,
which readers of this book have likely used extensively. Personal computers
emphasize delivery of good performance to single users at low cost and usually
execute third-party software. This class of computing drove the evolution of many
computing technologies, which is only about 35 years old!

Servers are the modern form of what were once much larger computers, and
are usually accessed only via a network. Servers are oriented to carrying large
workloads, which may consist of either single complex applications—usually a
scientific or engineering application—or handling many small jobs, such as would
occur in building a large web server. These applications are usually based on
software from another source (such as a database or simulation system), but are
often modified or customized for a particular function. Servers are built from the
same basic technology as desktop computers, but provide for greater computing,
storage, and input/output capacity. In general, servers also place a greater emphasis
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of tens of thousands of
processors and many terabytes of memory, and cost tens to hundreds of millions
of dollars. Supercomputers are usually used for high-end scientific and engineering
calculations, such as weather forecasting, oil exploration, protein structure
determination, and other large-scale problems. Although such supercomputers
represent the peak of computing capability, they represent a relatively small fraction
of the servers and a relatively small fraction of the overall computer market in
terms of total revenue.

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the
microprocessors found in your car, the computers in a television set, and the
networks of processors that control a modern airplane or cargo ship. Embedded
computing systems are designed to run one application or one set of related
applications that are normally integrated with the hardware and delivered as a
single system; thus, despite the large number of embedded computers, most users
never really see that they are using a computer!

personal computer
(PC) A computer
designed for use by

an individual, usually
incorporating a graphics
display, a keyboard, and a
mouse.

server A computer

used for running

larger programs for
multiple users, often
simultaneously, and
typically accessed only via
a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and typically
cost tens to hundreds of
millions of dollars.

terabyte (TB) Originally
1,099,511,627,776

(2%) bytes, although
communications and
secondary storage

systems developers
started using the term to
mean 1,000,000,000,000
(10') bytes. To reduce
confusion, we now use the
term tebibyte (TiB) for
2% bytes, defining terabyte
(TB) to mean 10** bytes.
Figure 1.1 shows the full
range of decimal and
binary values and names.

embedded computer

A computer inside another
device used for running
one predetermined
application or collection of
software.

Chapter 1 Computer Abstractions and Technology

Decimal Binary
term Abbreviation | Value term Abbreviation | Value % Larger
KB 103 KiB 210

kilobyte kibibyte 2%
megabyte MB 106 mebibyte MiB 220 5%
gigabyte GB 10° gibibyte GiB 230 7%
terabyte B 102 tebibyte TiB 240 10%
petabyte PB 10 pebibyte PiB 250 13%
exabyte EB 10 exbibyte EiB 260 15%
zettabyte ZB 10% zebibyte ZiB 270 18%
yottabyte YB 10% yobibyte YiB 280 21%

FIGURE 1.1 The 2* vs. 10" bytes ambiguity was resolved by adding a binary notation for
all the common size terms. In the last column we note how much larger the binary term is than its
corresponding decimal term, which is compounded as we head down the chart. These prefixes work for bits
as well as bytes, so gigabit (Gb) is 10° bits while gibibits (Gib) is 2% bits.

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary
to handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in a
plane or cargo ship crashes). In consumer-oriented embedded applications, such as
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded
systems, techniques of redundancy from the server world are often employed.
Although this book focuses on general-purpose computers, most concepts apply
directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a
processor written in a hardware description language, such as Verilog or VHDL (see
Chapter 4). The core allows a designer to integrate other application-specific hardware
with the processor core for fabrication on a single chip.

Welcome to the PostPC Era

The continuing march of technology brings about generational changes in
computer hardware that shake up the entire information technology industry.
Since the last edition of the book we have undergone such a change, as significant
in the past as the switch starting 30 years ago to personal computers. Replacing the

1.1 Introduction

1400

1200 /\/ Cell phone (not

1000 including smart phone)
% 800
= Smart phone sales
S 600 L P

400 ,/
-~

/

PC (not including
tablet)

2
00 Tablet

2007 2008 2009 2010 2011 2012

FIGURE 1.2 The number manufactured per year of tablets and smart phones, which
reflect the PostPC era, versus personal computers and traditional cell phones. Smart phones
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest
growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories
are relatively flat or declining.

PC is the personal mobile device (PMD). PMDs are battery operated with wireless
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,
users can download software (“apps”) to run on them. Unlike PCs, they no longer
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen
or even speech input. Today’s PMD is a smart phone or a tablet computer, but
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time
of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the traditional server is Cloud Computing, which relies upon
giant datacenters that are now known as Warehouse Scale Computers (WSCs).
Companies like Amazon and Google build these WSCs containing 100,000 servers
and then let companies rent portions of them so that they can provide software
services to PMDs without having to build WSCs of their own. Indeed, Software as
a Service (SaaS) deployed via the cloud is revolutionizing the software industry just
as PMDs and WSCs are revolutionizing the hardware industry. Today’s software
developers will often have a portion of their application that runs on the PMD and
a portion that runs in the Cloud.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the

Personal mobile
devices (PMDs) are
small wireless devices to
connect to the Internet;
they rely on batteries for
power, and software is
installed by downloading
apps. Conventional
examples are smart
phones and tablets.

Cloud Computing refers
to large collections of
servers that provide services
over the Internet; some
providers rent dynamically
varying numbers of servers
as a utility.

Software as a Service
(SaaS) delivers software
and data as a service over
the Internet, usually via

a thin program such as a
browser that runs on local
client devices, instead of
binary code that must be
installed, and runs wholly
on that device. Examples
include web search and
social networking.

Chapter 1 Computer Abstractions and Technology

multicore
microprocessor

A microprocessor
containing multiple
processors (“cores”) in a
single integrated circuit.

last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature
of processors and the hierarchical nature of memories. Moreover, as we explain
in Section 1.7, today’s programmers need to worry about energy efficiency of
their programs running either on the PMD or in the Cloud, which also requires
understanding what is below your code. Programmers who seek to build
competitive versions of software will therefore need to increase their knowledge of
computer organization.

We are honored to have the opportunity to explain what’s inside this revolutionary
machine, unraveling the software below your program and the hardware under the
covers of your computer. By the time you complete this book, we believe you will
be able to answer the following questions:

B How are programs written in a high-level language, such as C or Java,
translated into the language of the hardware, and how does the hardware
execute the resulting program? Comprehending these concepts forms the
basis of understanding the aspects of both the hardware and software that
affect program performance.

m What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

B What determines the performance of a program, and how can a programmer
improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s
language, and the effectiveness of the hardware in executing the program.

B What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

B What techniques can be used by hardware designers to improve energy
efficiency? What can the programmer do to help or hinder energy efficiency?

B What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 6).

B Since the first commercial computer in 1951, what great ideas did computer
architects come up with that lay the foundation of modern computing?

1.1 Introduction

Without understanding the answers to these questions, improving the
performance of your program on a modern computer or evaluating what features
might make one computer better than another for a particular application will be
a complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and energy, introduces
integrated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the
terminology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted definition
of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCle, SATA, and many others.

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

acronym A word
constructed by taking the
initial letters of a string
of words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

The performance of a program depends on a combination of the effectiveness of the
algorithms used in the program, the software systems used to create and translate
the program into machine instructions, and the effectiveness of the computer in
executing those instructions, which may include input/output (I/O) operations.
This table summarizes how the hardware and software affect performance.

Hardware or software Where is this
component How this component affects performance topic covered?

Algorithm Other books!

Determines both the number of source-level
statements and the number of I/0 operations
executed

Programming language,
compiler, and architecture
Processor and memory
system

1/0 system (hardware and
operating system)

Determines the number of computer instructions
for each source-level statement

Chapters 2 and 3

Determines how fast instructions can be executed | Chapters 4, 5, and 6

Determines how fast /0 operations may be
executed

Chapters 4, 5, and 6

Understanding
Program
Performance

10

Chapter 1 Computer Abstractions and Technology

Check
Yourself

To demonstrate the impact of the ideas in this book, we improve the performance
of a C program that multiplies a matrix times a vector in a sequence of
chapters. Each step leverages understanding how the underlying hardware
really works in a modern microprocessor to improve performance by a factor
of 200!

B In the category of data level parallelism, in Chapter 3 we use subword
parallelism via C intrinsics to increase performance by a factor of 3.8.

B In the category of instruction level parallelism, in Chapter 4 we use loop
unrolling to exploit multiple instruction issue and out-of-order execution
hardware to increase performance by another factor of 2.3.

B In the category of memory hierarchy optimization, in Chapter 5 we use
cache blocking to increase performance on large matrices by another factor
of 2.5.

B In the category of thread level parallelism, in Chapter 6 we use parallel for
loops in OpenMP to exploit multicore hardware to increase performance by
another factor of 14.

Check Yourself sections are designed to help readers assess whether they
comprehend the major concepts introduced in a chapter and understand the
implications of those concepts. Some Check Yourself questions have simple answers;
others are for discussion among a group. Answers to the specific questions can
be found at the end of the chapter. Check Yourself questions appear only at the
end of a section, making it easy to skip them if you are sure you understand the
material.

1. The number of embedded processors sold every year greatly outnumbers
the number of PC and even PostPC processors. Can you confirm or deny
this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of conventional computers in your home?

2. Asmentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

B The algorithm chosen

B The programming language or compiler
B The operating system

B The processor

B TheI/O system and devices

1.2 Eight Great Ideas in Computer Architecture

11

Eight Great Ideas in Computer
Architecture

We now introduce eight great ideas that computer architects have been invented in
the last 60 years of computer design. These ideas are so powerful they have lasted
long after the first computer that used them, with newer architects demonstrating
their admiration by imitating their predecessors. These great ideas are themes that
we will weave through this and subsequent chapters as examples arise. To point
out their influence, in this section we introduce icons and highlighted terms that
represent the great ideas and we use them to identify the nearly 100 sections of the
book that feature use of the great ideas.

Design for Moore’s Law

The one constant for computer designers is rapid change, which is driven largely by
Moore’s Law. It states that integrated circuit resources double every 18-24 months.
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made
by Gordon Moore, one of the founders of Intel. As computer designs can take years,
the resources available per chip can easily double or quadruple between the start
and finish of the project. Like a skeet shooter, computer architects must anticipate
where the technology will be when the design finishes rather than design for where
it starts. We use an “up and to the right” Moore’s Law graph to represent designing
for rapid change.

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew by Moore’s Law. A major productivity technique for
hardware and software is to use abstractions to represent the design at different
levels of representation; lower-level details are hidden to offer a simpler model at
higher levels. We'll use the abstract painting icon to represent this second great
idea.

Make the Common Case Fast

Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the
rare case and hence is often easier to enhance. This common sense advice implies
that you know what the common case is, which is only possible with careful
experimentation and measurement (see Section 1.6). We use a sports car as the
icon for making the common case fast, as the most common trip has one or two
passengers, and it’s surely easier to make a fast sports car than a fast minivan!

MOORE’'S LAW

ABSTRACTION

~_-

COMMON CASE FAST

12

Chapter 1 Computer Abstractions and Technology

PARALLELISM

PIPELINING

&

PREDICTION

HIERARCHY

oﬂl'-m

DEPENDABILITY

Performance via Parallelism

Since the dawn of computing, computer architects have offered designs that get
more performance by performing operations in parallel. We'll see many examples
of parallelism in this book. We use multiple jet engines of a plane as our icon for
parallel performance.

Performance via Pipelining

A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining. For example, before fire engines, a “bucket
brigade” would respond to a fire, which many cowboy movies show in response to
a dastardly act by the villain. The townsfolk form a human chain to carry a water
source to fire, as they could much more quickly move buckets up the chain instead
of individuals running back and forth. Our pipeline icon is a sequence of pipes,
with each section representing one stage of the pipeline.

Performance via Prediction

Following the saying that it can be better to ask for forgiveness than to ask for
permission, the final great idea is prediction. In some cases it can be faster on
average to guess and start working rather than wait until you know for sure,
assuming that the mechanism to recover from a misprediction is not too expensive
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

Hierarchy of Memories

Programmers want memory to be fast, large, and cheap, as memory speed often
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is often the majority of computer cost. Architects have found
that they can address these conflicting demands with a hierarchy of memories, with
the fastest, smallest, and most expensive memory per bit at the top of the hierarchy
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in
Chapter 5, caches give the programmer the illusion that main memory is nearly
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of
the hierarchy. We use a layered triangle icon to represent the memory hierarchy.
The shape indicates speed, cost, and size: the closer to the top, the faster and more
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy

Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our icon, since the dual tires on each side of its rear axels allow the truck to continue
driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the flat tire can be fixed, thereby restoring redundancy!)

1.3 Below Your Program

13

Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of software are organized primarily in a
hierarchical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software
are central to every computer system today: an operating system and a compiler.
An operating system interfaces between a user’s program and the hardware
and provides a variety of services and supervisory functions. Among the most
important functions are:

m Handling basic input and output operations
m Allocating storage and memory

B Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

Mark Twain, The
Innocents Abroad, 1869

ABSTRACTION

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.

14

Chapter 1 Computer Abstractions and Technology

compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C++, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off, and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. The first of
these programs was named an assembler. This program translates a symbolic version
of an instruction into the binary version. For example, the programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

Thisinstruction tells the computer to add the two numbers A and B. The name coined
for this symbolic language, still used today, is assembly language. In contrast, the
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer
to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.

1.3 Below Your Program

15

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers
that translate programs in such languages into instructions. Figure 1.4 shows the
relationships among these programs and languages, which are more examples of
the power of abstraction.

High-level swap(int v[1, int k)
language {int temp;

program temp = v[k];

(in C) vlk]l = v[lk+1];

vlk+1] = temp;

Assembly swap:

language multi $2, $5,4

program add $2, $4,%2
(for MIPS) Tw $15, 0(%$2)

Tw $16, 4($2)
Sw $16, 0($2)
SwW $15, 4($2)
jr $31

Assembler

Binary machine 00000000101000100000000100011000

language 00000000100000100001000000100001
program 10001101111000100000000000000000
(for MIPS) 10001110000100100000000000000100

10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

FIGURE 1.4 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2.

ABSTRACTION

high-level
programming

language A portable
language such as C, C+ +,
Java, or Visual Basic that
is composed of words

and algebraic notation
that can be translated by

a compiler into assembly
language.

16

Chapter 1 Computer Abstractions and Technology

input device

A mechanism through
which the computer is
fed information, such as a
keyboard.

output device

A mechanism that
conveys the result of a
computation to a user,
such as a display, or to
another computer.

A compiler enables a programmer to write this high-level language expression:

A+ B

The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software development
is that it takes less time to develop programs when they are written in languages
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

The final advantage is that programming languages allow programs to be
independent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions of
any computer. These three advantages are so strong that today little programming
is done in assembly language.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important that
we hope you will remember it forever, we emphasize it by identifying it as a Big
Picture item. We have about a dozen Big Pictures in this book, the first being the
five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

Two key components of computers are input devices, such as the microphone,
and output devices, such as the speaker. As the names suggest, input feeds the

1.4 Under the Covers

17

computer, and output is the result of computation sent to the user. Some devices,
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s
take an introductory tour through the computer hardware, starting with the
external I/O devices.

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these five
categories. To help you keep all this in perspective, the five components of
a computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

Interface

Computer

Datapath

Evaluating
performance

Processor Memory

FIGURE 1.5 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data from
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

the BIG

Picture

18

Chapter 1 Computer Abstractions and Technology

liquid crystal display

A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

active matrix display

A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture
element. Screens are
composed of hundreds
of thousands to millions
of pixels, organized in a
matrix.

Through computer
displays I have landed
an airplane on the
deck of a moving
carrier, observed a
nuclear particle hit a
potential well, flown
in a rocket at nearly
the speed of light and
watched a computer
reveal its innermost
workings.

Ivan Sutherland, the
“father” of computer
graphics, Scientific
American, 1984

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Most personal
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three-
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can
be represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix in a typical tablet ranges in size from
1024 X 768 to 2048 X 1536. A color display might use 8 bits for each of the three
colors (red, blue, and green), for 24 bits per pixel, permitting millions of different
colors to be displayed.

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen
is stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Frame buffer

Raster scan CRT display

[[

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X, Y,) contains
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X, Y,).

1.4 Under the Covers

19

Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the PostPC era
have replaced the keyboard and mouse with touch sensitive displays, which has
the wonderful user interface advantage of users pointing directly what they are
interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets
today use capacitive sensing. Since people are electrical conductors, if an insulator
like glass is covered with a transparent conductor, touching distorts the electrostatic
field of the screen, which results in a change in capacitance. This technology can
allow multiple touches simultaneously, which allows gestures that can lead to
attractive user interfaces.

Opening the Box

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly,
of the five classic components of the computer, I/O dominates this reading device.
The list of I/O devices includes a capacitive multitouch LCD display, front facing
camera, rear facing camera, microphone, headphone jack, speakers, accelerometer,
gyroscope, Wi-Fi network, and Bluetooth network. The datapath, control, and
memory are a tiny portion of the components.

The small rectangles in Figure 1.8 contain the devices that drive our advancing
technology, called integrated circuits and nicknamed chips. The A5 package seen
in the middle of in Figure 1.8 contains two ARM processors that operate with a
clock rate of 1 GHz. The processor is the active part of the computer, following the
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O
devices to activate, and so on. Occasionally, people call the processor the CPU, for
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a
microprocessor. The processor logically comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

The A5 package in Figure 1.8 also includes two memory chips, each with
2 gibibits of capacity, thereby supplying 512MiB. The memory is where the
programs are kept when they are running; it also contains the data needed by the
running programs. The memory is built from DRAM chips. DRAM stands for
dynamic random access memory. Multiple DRAM:s are used together to contain
the instructions and data of a program. In contrast to sequential access memories,
such as magnetic tapes, the RAM portion of the term DRAM means that memory
accesses take basically the same amount of time no matter what portion of the
memory is read.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache memory.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

central processor unit
(CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and I/O
devices according to

the instructions of the
program.

memory The storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location. Access times
are 50 nanoseconds and
cost per gigabyte in 2012
was $5 to $10.

20

Chapter 1 Computer Abstractions and Technology

FIGURE 1.7 Components of the Apple iPad 2 A1395. The metal back of the iPad (with the reversed
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To
the far right is the 3.8V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and offers
10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. The
small components surrounding the metal back in the center are what we think of as the computer; they
are often L-shaped to fit compactly inside the case next to the battery. Figure 1.8 shows a close-up of the
L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the
processor and the memory. The tiny rectangle below the logic board contains a chip that provides wireless
communication: Wi-Fi, Bluetooth, and FM tuner. It fits into a small slot in the lower left corner of the logic
board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and
accelerometer. These last two chips combine to allow the iPad to recognize 6-axis motion. The tiny rectangle
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. The
cable at the bottom is the connector between the logic board and the camera/volume control board. The
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy
iFixit, www.ifixit.com)

FIGURE 1.8 The logic board of Apple iPad 2 in Figure 1.7. The photo highlights five integrated circuits.
The large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of
the processor chip inside the A5 package. The similar sized chip to the left is the 32 GB flash memory chip
for non-volatile storage. There is an empty space between the two chips where a second flash chip can be
installed to double storage capacity of the iPad. The chips to the right of the A5 include power controller and
1/O controller chips. (Courtesy iFixit, www.ifixit.com)

1.4 Under the Covers

21

«— GPIO

Processor
Data Path
p

Processor
Data Path

GPIO

Processor
Data Path
p

Processor
Data Path

Digital
Logic

Blocks

FIGURE 1.9 The processor integrated circuit inside the A5 package. The size of chip is 12.1 by 10.1 mm, and
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or
cores in the middle left of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the
upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM).

(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buffer for the DRAM
memory. (The nontechnical definition of cache is a safe place for hiding things.)
Cache is built using a different memory technology, static random access memory
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small,
fast memory that acts as a
buffer for a slower, larger

memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

A

HIERARCHY

22

Chapter 1 Computer Abstractions and Technology

ABSTRACTION

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
lowest-level software

that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O, and
o on.

application binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
It defines a standard for
binary portability across
computers.

e BIG

Picture

implementation
Hardware that obeys the
architecture abstraction.

volatile memory
Storage, such as DRAM,
that retains data only if it
is receiving power.

nonvolatile memory

A form of memory that
retains data even in the
absence of a power source
and that is used to store
programs between runs.

A DVD disk is nonvolatile.

As mentioned above, one of the great ideas to improve design is abstraction.
One of the most important abstractions is the interface between the hardware
and the lowest-level software. Because of its importance, it is given a special
name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the
details of doing I/O, allocating memory, and other low-level system functions
so that application programmers do not need to worry about such details. The
combination of the basic instruction set and the operating system interface
provided for application programmers is called the application binary interface
(ABI).

An instruction set architecture allows computer designers to talk about
functions independently from the hardware that performs them. For example,
we can talk about the functions of a digital clock (keeping time, displaying the
time, setting the alarm) independently from the clock hardware (quartz crystal,
LED displays, plastic buttons). Computer designers distinguish architecture from
an implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

Both hardware and software consist of hierarchical layers using abstraction,
with each lower layer hiding details from the level above. One key interface
between the levels of abstraction is the instruction set architecture—the
interface between the hardware and low-level software. This abstract
interface enables many implementations of varying cost and performance
to run identical software.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD disk doesn’t forget the movie when you turn off the
power to the DVD player, and is thus a nonvolatile memory technology.

1.4 Under the Covers

23

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and
programs between runs, the term main memory or primary memory is used for
the former, and secondary memory for the latter. Secondary memory forms the
next lower layer of the memory hierarchy. DRAMs have dominated main memory
since 1975, but magnetic disks dominated secondary memory starting even earlier.
Because of their size and form factor, personal Mobile Devices use flash memory,
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip
containing the flash memory of the iPad 2. While slower than DRAM, it is much
cheaper than DRAM in addition to being nonvolatile. Although costing more per
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged,
and it is more power efficient than disks. Hence, flash memory is the standard
secondary memory for PMDs. Alas, unlike disks and DRAM, flash memory bits
wear out after 100,000 to 1,000,000 writes. Thus, file systems must keep track of
the number of writes and have a strategy to avoid wearing out storage, such as by
moving popular data. Chapter 5 describes disks and flash memory in more detail.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device
or server without a network interface would be ridiculed. Networked computers
have several major advantages:

B Communication: Information is exchanged between computers at high
speeds.

B Resource sharing: Rather than each computer having its own I/O devices,
computers on the network can share I/O devices.

B Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and
speed make Ethernet useful to connect computers on the same floor of a building;

A

HIERARCHY

main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

secondary memory
Nonvolatile memory
used to store programs
and data between runs;
typically consists of flash
memory in PMDs and
magnetic disks in servers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material. Because they

are rotating mechanical
devices, access times are
about 5 to 20 milliseconds
and cost per gigabyte in
2012 was $0.05 to $0.10.

flash memory

A nonvolatile semi-
conductor memory. It

is cheaper and slower
than DRAM but more
expensive per bit and
faster than magnetic disks.
Access times are about 5
to 50 microseconds and
cost per gigabyte in 2012
was $0.75 to $1.00.

24

Chapter 1 Computer Abstractions and Technology

local area network
(LAN) A network
designed to carry data
within a geographically
confined area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the web. They are typically based on optical fibers and are
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by
becoming much more ubiquitous and by making dramatic increases in performance.
In the 1970s, very few individuals had access to electronic mail, the Internet and
web did not exist, and physically mailing magnetic tapes was the primary way to
transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology,
developed about 30 years ago, wasa version of Ethernet thathad a maximum capacity
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if
not a hundred, computers. Today, local area network technology offers a capacity
of from 1 to 40 gigabits per second, usually shared by at most a few computers.
Optical communications technology has allowed similar growth in the capacity of
wide area networks, from hundreds of kilobits to gigabits and from hundreds of
computers connected to a worldwide network to millions of computers connected.
This combination of dramatic rise in deployment of networking combined with
increases in capacity have made network technology central to the information
revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way
computers communicate. Wireless technology is widespread, which enabled
the PostPC Era. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmission
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit
different from wire-based networks, since all users in an immediate area share the
airwaves.

B Semiconductor DRAM memory, flash memory, and disk storage differ
significantly. For each technology, list its volatility, approximate relative
access time, and approximate relative cost compared to DRAM.

Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.10 shows the technologies that have

1.5 Technologies for Building Processors and Memory

25

m Technology used in computers Relative performance/unit cost

1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit 900
1995 | Very large-scale integrated circuit 2,400,000
2013 | Ultra large-scale integrated circuit 250,000,000,000

FIGURE 1.10 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See &3] Section 1.12.

been used over time, with an estimate of the relative performance per unit cost for
each technology. Since this technology shapes what computers will be able to do
and how quickly they will evolve, we believe all computer professionals should be
familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. When
Gordon Moore predicted the continuous doubling of resources, he was predicting
the growth rate of the number of transistors per chip. To describe the tremendous
increase in the number of transistors from hundreds to millions, the adjective very
large scale is added to the term, creating the abbreviation VLSI, for very large-scale
integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For decades, the industry has consistently
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how manufacture integrated circuits, we start at the beginning.
The manufacture of a chip begins with silicon, a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor. With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to
transform into one of three devices:

B Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

10,000,000 1
1,000,000 4
1G
2 100,000 4 256M 512M
] 16M 28M
I 64M
8 10,000 M
2 ™M
g 1000 - 256K 2
100 - 64K
16K
10

transistor An on/off
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device
containing hundreds of
thousands to millions of
transistors.

silicon A natural
element that is a
semiconductor.

semiconductor
A substance that does not
conduct electricity well.

4G
2G

Year of introduction

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

FIGURE 1.11 Growth of capacity per DRAM chip over time. The y-axis is measured in kibibits (2'° bits). The DRAM industry
quadrupled capacity almost every three years, a 60% increase per year, for 20 years. In recent years, the rate has slowed down and is somewhat

closer to doubling every two years to three years.

26

Chapter 1 Computer Abstractions and Technology

silicon crystal ingot

A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more than
0.1 inches thick, used to
create chips.

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

B Excellent insulators from electricity (like plastic sheathing or glass)
B Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of
combinations of conductors, insulators, and switches manufactured in a single
small package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.12 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8-12 inches in diameter and about 12-24 inches long. An ingot
is finely sliced into wafers no more than 0.1 inches thick. These wafers then go
through a series of processing steps, during which patterns of chemicals are placed
on each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

Blank
Silicon ingot wafers
C D — = — Q) —
processing steps
Tested dies Tested Patterned wafers
oo wafer TN
Bond die t D%IZ'DDD&D Wafi (Zas
ond die to . afer #
R R R - o \
package O0OXOoOo Rlcey tester))
oogo (/
oo I\

l SEE%

Packaged dies Tested packaged dies

_» Part _»_» Ship to
tester customers

FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this final test.

A single microscopic flaw in the wafer itself or in one of the dozens of patterning
steps can result in that area of the wafer failing. These defects, as they are called,
make it virtually impossible to manufacture a perfect wafer. The simplest way to
cope with imperfection is to place many independent components on a single
wafer. The patterned wafer is then chopped up, or diced, into these components,

1.6 Performance

27

FIGURE 1.13 A 12-inch (300mm) wafer of Intel Core i7 (Courtesy Intel). The number of
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5mm. The several dozen partially
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the
masks used to pattern the silicon. This die uses a 32-nanometer technology, which means that the smallest
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature
size, which refers to the size of the transistors as “drawn” versus the final manufactured size.

called dies and more informally known as chips. Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to
contain the flaws, rather than the whole wafer. This concept is quantified by the
yield of a process, which is defined as the percentage of good dies from the total
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fit on a wafer. To reduce the
cost, using the next generation process shrinks a large die as it uses smaller sizes for
both transistors and wires. This improves the yield and the die count per wafer. A
32-nanometer (nm) process was typical in 2012, which means essentially that the
smallest feature size on the die is 32 nm.

die The individual
rectangular sections that
are cut from a wafer, more
informally known as
chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

28

Chapter 1 Computer Abstractions and Technology

Check
Yourself

Once you've found good dies, they are connected to the input/output pins of a
package, using a process called bonding. These packaged parts are tested a final time,
since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple

equations:
Cost per die = — Cost per wafer.
Dies per wafer X yield
. Wafer area
Dies per wafer =~ ——
Die area

1

Yield = >
(1 + (Defects per area X Die area/2))

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.13). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in the die area.

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. Ttisless work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of performance
improvement techniques employed by hardware designers, have made performance
assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to

1.6 Performance

29

purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.14
lists some typical passenger airplanes, together with their cruising speed, range,
and capacity. If we wanted to know which of the planes in this table had the best
performance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed was the Concorde (retired from service in 2003), the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747.

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capaclty (miles) (m.p.h.) (passengers x m.p.h.)

Boeing 777 4630 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

Lets suppose we define performance in terms of speed. This still leaves two
possible definitions. You could define the fastest plane as the one with the highest
cruising speed, taking a single passenger from one point to another in the least time.
If you were interested in transporting 450 passengers from one point to another,
however, the 747 would clearly be the fastest, as the last column of the figure shows.
Similarly, we can define computer performance in several different ways.

If you were running a program on two different desktop computers, youd say
that the faster one is the desktop computer that gets the job done first. If you were
running a datacenter that had several servers running jobs submitted by many
users, youd say that the faster computer was the one that completed the most
jobs during a day. As an individual computer user, you are interested in reducing
response time—the time between the start and completion of a task—also referred

response time Also
called execution time.
The total time required

for the computer to

complete a task, including

disk accesses, memory
accesses, I/0 activities,

operating system

overhead, CPU execution

time, and so on.

30

Chapter 1 Computer Abstractions and Technology

throughput Also called
bandwidth. Another
measure of performance,
it is the number of tasks
completed per unit time.

to as execution time. Datacenter managers are often interested in increasing
throughput or bandwidth—the total amount of work done in a given time. Hence,
in most cases, we will need different performance metrics as well as different sets
of applications to benchmark personal mobile devices, which are more focused on
response time, versus servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case
1, both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost
as large as the throughput, the system might force requests to queue up. In
this case, increasing the throughput could also improve response time, since
it would reduce the waiting time in the queue. Thus, in many real computer
systems, changing either execution time or throughput often affects the other.

In discussing the performance of computers, we will be primarily concerned with
response time for the first few chapters. To maximize performance, we want to
minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

1

Performancey = —
Execution timey

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have
Performancey > Performancey
1 1

>
Execution timey Execution timey

Execution time, > Execution timey

That is, the execution time on Y is longer than that on X, if X is faster than Y.

1.6 Performance

31

In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase “X is n times faster than
Y”—or equivalently “X is n times as fast as Y”—to mean

Performancey

Performance,

If X is n times as fast as Y, then the execution time on Y is n times as long as it is
on X:

Performancey Execution timey

Performancey Execution timey

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is # times as fast as B if

Performance, Execution timep

Performance, Execution time

Thus the performance ratio is

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since
Performance ,

=15
Performancey

means that

Performance
I—A = Performance
5

32

Chapter 1 Computer Abstractions and Technology

CPU execution

time Also called CPU
time. The actual time the
CPU spends computing
for a specific task.

user CPU time The
CPU time spent in a
program itself.

system CPU time The
CPU time spent in

the operating system
performing tasks on
behalf of the program.

For simplicity, we will normally use the terminology as fast as when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count. The most straightforward definition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (1/0)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize throughput
rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time over which the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult to
do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

Understanding
Program
Performance

Different applications are sensitive to different aspects of the performance of a
computer system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In

1.6 Performance

33

some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details
of a computer it’s convenient to think about performance in other metrics. In
particular, computer designers may want to think about a computer by using a
measure that relates to how fast the hardware can perform basic functions. Almost
all computers are constructed using a clock that determines when events take
place in the hardware. These discrete time intervals are called clock cycles (or
ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a
clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or
250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the
clock period. In the next subsection, we will formalize the relationship between the
clock cycles of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both personal mobile
devices and the Cloud is limited by network performance. For the following
changes, state whether only the throughput improves, both response time
and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput.
c. More memory is added to the computer.

2. Computer C’s performance is 4 times as fast as the performance of computer
B, which runs a given application in 28 seconds. How long will computer C
take to run that application?

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU

clock cycle Also called
tick, clock tick, clock
period, clock, or cycle.
The time for one clock
period, usually of the
processor clock, which
runs at a constant rate.

clock period The length
of each clock cycle.

Check
Yourself

34

Chapter 1 Computer Abstractions and Technology

execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time CPU clock cycles .
foraprogram ~ fora program X Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time CPU clock cycles for a program
for a program = Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-oft
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

Let’s first find the number of clock cycles required for the program on A:

CPU ti CPU clock cycles ,
ime, =
A Clock rate,

CPU clock cycles
0° cycles

10 seconds =

2 X1
second

cycles

CPU clock cycles, = 10 seconds X 2 X 10’ =20 X 10° cycles

second

1.6 Performance

35

CPU time for B can be found using this equation:

1.2 X CPU clock cycles ,

CPU timey =
Clock ratey
1.2 X 20 X 10° cycl
6 seconds = 0 X107 cycles
Clock rateg
2%X20x%10° 2 %20 %10’ X 10°
Clock rate, = 1.2 X120 X 10" cycles _ 0.2X 20 X 10" cycles _ 4 X10" cycles _ 4 GHz
6 seconds second second

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of
instructions needed for the program. However, since the compiler clearly generated
instructions to execute, and the computer had to execute the instructions to run
the program, the execution time must depend on the number of instructions in a
program. One way to think about execution time is that it equals the number of
instructions executed multiplied by the average time per instruction. Therefore, the
number of clock cycles required for a program can be written as

. Average clock cycles
CPU clock cycles = Instructions for a program X per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different
instructions may take different amounts of time depending on what they do, CPI is
an average of all the instructions executed in the program. CPI provides one way of
comparing two different implementations of the same instruction set architecture,
since the number of instructions executed for a program will, of course, be the
same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture.
Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program,
and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same
program. Which computer is faster for this program and by how much?

clock cycles

per instruction

(CPI) Average number
of clock cycles per
instruction for a program
or program fragment.

36

Chapter 1 Computer Abstractions and Technology

instruction count The
number of instructions
executed by the program.

We know that each computer executes the same number of instructions for
the program,; let’s call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cycles, =1 x2.0
CPU clock cyclesy = I x 1.2

Now we can compute the CPU time for each computer:
CPU time, = CPU clock cycles, X Clock cycle time
=] X 2.0 X250 ps = 500 X I ps
Likewise, for B:

CPU timep, = I X 1.2 X 500 ps = 600 X I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance, _ Execution timey _ 600 X I'ps

CPU performance; ~ Execution time, 500 X Ips

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count X CPI X Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

i X
CPU time = Instruction count X CPI
Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

1.6 Performance

37

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a
particular computer. The hardware designers have supplied the following facts:

- CPI for each instruction class

] cPl \ 1 \ 2 \ 3 \

For a particular high-level language statement, the compiler writer is
considering two code sequences that require the following instruction counts:

Instruction counts for each instruction class

Codoseuence [A | B | ¢ |
2 1 2

1
2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 +
1 = 6 instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

CPU clock cycles = Z(CPIi X C;)

i=1
This yields
CPU clock cycles; = 2 X1)+(1X2)+(2X3)=2+2+6 =10 cycles

CPU clock cycles, = (4 X1) + (1 X2)+ (1 X3) =4+2+3 =9 cycles

So code sequence 2 is faster, even though it executes one extra instruction. Since
code sequence 2 takes fewer overall clock cycles but has more instructions, it
must have a lower CPI. The CPI values can be computed by

CPI = CPU clock cycles
Instruction count

cpI, = CPU clock cycles; _ 10 _ 20
Instruction count, 5

cpL, = CPU clockcycles, _ 9 _ L5
Instruction count, 6

38

Chapter 1 Computer Abstractions and Technology

the BIG

Picture

Figure 1.15 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

Wi = S i = Instructions % Clock cycles S Seconds

Program Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

FIGURE 1.15 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI,
and often, the sources of performance loss. Since the instruction count depends
on the architecture, but not on the exact implementation, we can measure the
instruction count without knowing all the details of the implementation. The CPI,
however, depends on a wide variety of design details in the computer, including
both the memory system and the processor structure (as we will see in Chapter 4
and Chapter 5), as well as on the mix of instruction types executed in an application.
Thus, CPI varies by application, as well as among implementations with the same
instruction set.

1.7 The Power Wall

39

The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.10, we'll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix

A measure of the dynamic
frequency of instructions
across one or many
programs.

The performance of a program depends on the algorithm, the language, the
compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.

Hardware
or software
component
Algorithm Instruction count, The algorithm determines the number of source program
possibly CPI instructions executed and hence the number of processor

instructions executed. The algorithm may also affect the CPI,
by favoring slower or faster instructions. For example, if the
algorithm uses more divides, it will tend to have a higher CPI.

Programming Instruction count, The programming language certainly affects the instruction
language CPI count, since statements in the language are translated to
processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher CPI
instructions.

Compiler Instruction count, The efficiency of the compiler affects both the instruction

CPI count and average cycles per instruction, since the compiler
determines the translation of the source language instructions
into computer instructions. The compiler’s role can be very
complex and affect the CPI in complex ways.

Instruction set | Instruction count, The instruction set architecture affects all three aspects of
architecture clock rate, CPI CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we'll see in
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To
reflect that approach, some designers invert CPI to talk about IPC, or instructions per
clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CPI of 0.5.

Understanding
Program
Performance

40

Chapter 1 Computer Abstractions and Technology

Check
Yourself

Elaboration: Although clock cycle time has traditionally been fixed, to save energy
or temporarily boost performance, today’s processors can vary their clock rates, so we
would need to use the average clock rate for a program. For example, the Intel Core i7
will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls
this Turbo mode.

A given application written in Java runs 15 seconds on a desktop processor. A new
Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler? Pick the right answer from the three
choices below:

15 X 0.6
—— = 8.2 sec
1.1
b. 15X 0.6 X 1.1 = 9.9sec
15X 1.1
> = 27.5 sec

The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

10,000 + o
2000 3800 2667 3300 3400
2 - B8 100
: T Clock Rate Il ~
= 200 80 2
= o :
% 100 + 66 lo £
i s
x
5 10 Power la &
(&} -
+ 20
1 t t t t - } ' : . : _ o
8y 88 82 Es ef I£_TtEgasc2s5 288
N I5e] < E 9 S E o= ke S< .88 T2d
Q2 o2 o2 T3 22 5E£E0 382 92BS 55 Emo
T = cl 58539 £ 0 8858 8.8
o= S 5=8 58 05RO0F5- 0=
b a2 o x =)

FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

